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Abstract A general treatment of linear pharmacokinetics that enables 
equations to be obtained simply for all linear compartmental models, with 
input in one or more compartments, is presented. Two approaches are 
described: one based on a full Laplace transformation and one that avoids 
transformation of the input functions and the use of convolution integrals. 
The latter approach is of particular interest when dealing with complex 
input functions not having a simple Laplace transform. The concept of 
acceptor and donor subsystems is introduced. It is demonstrated that 
disposition in certain models may be simplified and analyzed in terms 
of disposition in subsystems of simpler composition. The treatment 
presented is illustrated with several examples. 

Keyphrases 0 Pharmacokinetics-general treatment for derivation of 
equations for all linear compartmental models 0 Models, pharmacoki- 
netic-general treatment for derivation of equations for all linear com- 
partmental models 

Mathematical modeling in pharmacokinetics is com- 
monly based on linear models in which it is assumed that 
the rate of transfer from any compartment is proportional 
to the amount in that compartment (1-5). Benet (6) pre- 
sented a general treatment of linear mammillary models 
that considers elimination from any compartment but 
allows input into the central compartment only. Other 
investigators (7,8) extended Benet’s approach to include 
input into a peripheral compartment, but they only con- 
sidered mammillary models. This paper presents a general 
treatment of any linear pharmacokinetic model with input 
in one or more compartments. 

Two approaches are presented: one requires a Laplace 
transformation of the input functions, and one avoids such 
a transformation. The concept of subsystems is introduced. 
It is demonstrated that certain models can be simplified 
and analyzed in terms of the disposition of the subsys- 
tems. 

THEORY 

Every possible model having n compartments is a subset of the dense 
n-compartmental system, defined as a system with reversible transfer 

between all n compartments and elimination and input in every com- 
partment (e.g., Scheme I). A description of the dense system will describe 
all compartmental models when the domains of the rate constants and 
input functions are defined as k,,  2 0 and f ,  ( t )  2 0, t > 0, respectively. 

The linear differential equations that describe the kinetics in a dense 
system are given by’: 

(Eq. 1) 

(Eq. 2) 

X’ = ( K T  - Z)X + f 
Z = diag(E1, Ea, . . . , E n  ) 

” 
Ej = c kj, 

1 =O 
(Es. 3) 

The i th component of vector x is the amount in the i th compartment 
a t  time t. The i th  diagonal element, E,,  of the diagonal matrix, Z, is the 
sum of the exit rate constants of the ith compartment; K T  is the transpose 
of the n X n matrix, K = k,,, which contains the intercompartmental rate 
constants. The diagonal elements of K and K T  are always zero. 

Scheme I-Dense four-compartmental system with reversible transfer 
between all compartments and elimination and input in every 

compartment. 

1 Boldface capital letters denote n X n matrixes, and boldface lower case letters 
denote vectors of corresponding dimension. 
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Full  Transformation Approach-The Laplace transform of Eq. 1 
yields (bars denote transformed quantities): 

SE - ~ ( 0 )  = ( K T  - ZIE + 1 (Eq. 4) 

which can he rearranged to: 

(Eq. 5) - 
x = [-K"' + (sI + 2 ) ] - ' [ ~ ( 0 )  + f] 

where I is the identity matrix and x(0) is the vector x at time t = 0. 
I t  is convenient to introduce a matrix, S, defined as: 

S = -K + diag(s + El ,  s + E s ,  . . . , s + En) (Eq. 6) 

Then the solution of Eq. 1 by Eq. 5 simply becomes: 

x = L-'(Dv) (Eq. 7) 

D = ( S T ) - I  (Eq. 8) 

v = x(0) t f 

where L-l is the inverse Laplace transform operator. The matrix: 

will he called the disposition matrix. The  vector: 

0%. 9) 

will be called the input vector. 
Equation 7 describes the simultaneous and complete solution of all 

compartments in any linear pharmacokinetic model. Thus, the solution 
is simply stated as the inverse transform of the product of the disposition 
matrix and the input vector. 

The i th row of the disposition matrix, d, = (d , l ,  d,2, . . . , d,,), will be 
called the disposition vector for the i th  compartment. 

I t  then follows from Eq. 7 that: 

x, = 2 , ~ '  (d ,v )  (Eq. 10) 

i .e . ,  the solution for any compartment is the inverse transform of the 
scalar product of its disposition vector and the input vector of the sys- 
tem. 

The elements of the disposition matrix, D, are simply expressed in 
terms of S by: 

(Eq. 11) 

where S is the determinant of S and S,, is the cofactor corresponding to 
the i j th element. 

Equation 10 can thus he written more specifically as: 

or: 

(Eq. 12) 

x [x,(o) + i,i (Eq. 13) 

Subsystems--A compartmental system can be divided into various 
subsystems by "pulling it apart," with exit arrows remaining fixed to their 
respective compartments (e.g., Scheme 11). 

A subsystem not receiving input from other subsystems may be called 
a donor system and is said to he irreversibly connected (Scheme 11, Sys- 
tem D). An acceptor system is a subsystem receiving input from other 
subsystems (Scheme 11, Systems A, H, and C). 

The usefulness of subsystems arises from the fact that a compartmental 
system that can be divided into one or more irreversihly connected sub- 
systems can be analyzed in terms of the disposition of subsystems treated 
as isolated systems. Therefore, the system can be analyzed in a section 
of simpler composition. For example, consider a system that can he di- 
vided into an acceptor and a donor system, denoted [ I ]  and (21, respec- 
tively (Scheme 111, Systems A and B). Disposition in the donor system 
is independent of the remainder of the system so that: 

~ 1 2 1  = ~ , - ~ ( D ~ ? ~ v ~ ~ ~ )  (Eq. 14) 

where DILi and vi21 are the ni21 X ni2j disposition matrix and the input 
vector for the donor system treated as an isolated system, respectively 
(Scheme 111. System B). 

Similarly, disposition in the isolated acceptor system (Scheme 111, 
System A )  is given hy xlll = I ~ - l ( D ~ l ~ v ~ l ~ ) .  In contrast to a donor system, 
however, this disposition will not be the same as when the system is 
connected to the other subsystem because it receives input from it. 
However, the correct disposition is obtained by adding an additional 

n A , $$-!-!$- 
I 
I 

I 
I 
I 
I A'cP I + 

Scheme 11-Five compartmental system that can be "pulled apart " t o  
form various subsystems, of which only four are shown. 0 is a donor 
system irreuersibly connected t o  the acceptor Sys tem C. Partitioning 

into A and B produces only acceptor systems. 

input element, f, (Scheme 111, System R),to the j th  element of the vector 
vlll. This additional element is related to disposition in the donor system 
and the connector constant, k,, ,  hy: 

f j  = ki,6"21 = k,,(d, 12lvl2l) 1Eq. 15) 

Thus, the general case with N donor systems, each connected to an ac- 
ceptor system (denoted [I]) by one or more connector constants, is de- 
scribed by: 

C 

t 
INPUT . 

u u  
4 A B i 

ACCEPTOR SYSTEM DONOR SYSTEM 

U U 
Scheme Ill-Simple illustration of the subsystem approach. Disposition 
in the donor system, B, is unaffected by disposilion in the acceptor 
system, A, so that it can be analyzed separately i n  terms of the simpler 
disposition matrix, DIP], and the input vector, vI21. The isolated acceptor 
system, A, can be analyzed similarly; but a n  additional input element, 
fj, must be added to the  input  uector, vlll ,  to account for the fact that 
the acceptor system receives input from the  donor system (C). The 
additional input element is simply related to disposition in  the donor 

system via the connector constant, ki, (Eq.  1 5 ) .  
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and: 

xlll = L-I(DII]V[II) i + 1 (Eq. 17) 

where the nil1 X nil] matrix Clfl in Eq. 16 will be called the connector 
matrix for the i th  donor system. The j ,kth element of the connector 
matrix, C"1, contains the connector constant that  connects the j t h  
compartment in the acceptor system with the kth compartment in donor 
system (i]. 

The ith compartment in a subsystem in this context is defined as the 
compartment corresponding to the i th row of the disposition matrix of 
the subsystem. This definition allows arbitrary numbers to be assigned 
to the compartments so that Eqs. 16 and 17 still apply. 

Partial  Transformation Approach-The described approach is 
based on a Laplace transformation of both the disposition and the input 
kinetics. Its use is convenient in cases where the input functions are 
simple such that an inverse transformation can be obtained without the 
use of complex inversion formulas or convolution integrals. 

If the input function(s) is not simple, it may be useful to apply the 
following approach, which does not require transformation of the input 
functions. According to Eq. 9, Eq. 7 can be written: 

x = L-'[Dx(O) + DT] (Eq. 18) 

By application of the convolution theorem, this equation becomes: 

x = a(t)x(O) + @(t - r ) f ( r )  d r  (Eq. 19) At 
where the inverse transform of the disposition matrix, given by: 

@ ( t )  = L-ID (Eq. 20) 

is the normalized fundamental matrix of the complementary homoge- 
neous equation x' - (K"' - Z)x = 0. The elements of this matrix are 
readily obtained according to Eq. 11 by: 

I f3 

Equation 19 is of little practical interest because it involves a convolution 
integral. However, the following remarkable property of the fundamental 
matrix (9): 

+(t - T )  = e ( K " - E ) t t - ~ )  = e(KT-C)te(KT-C)(-r) @ ( t ) @ ( - r )  
(Eq. 22) 

enables the convolution integral to be converted into an ordinary integral 
so that Eq. 19 may be written as: 

RESULTS AND DISCUSSION 

Equation 12 describes any compartment of any linear pharmacokinetic 
model with input in one or more compartments. It is of interest to con- 
sider the following commonly applied system. 

Special Case: Input  in Central  Compartment Only-In this case 
/with x,>l(O) = 01, Eq. 12,reduces to: 

More specifically, when i = 1, Eq. 24 describes the central compartment. 
Benet (6) presented a general treatment of mammillary systems with 
central input that represents a special case within this category. A 
mammillary model consists specifically of a central compartment con- 
nected to a number of peripheral compartments that  are themselves 
unconnected. Benet's approach (6) can be summarized by: 

X I  L-'[(ds,d(&)l (Eq. 25) 

where in, was called the input function and ds,l wm called-the disposition 
function for Compartment 1, the central compartment. An elaborate 
expression (Eq. 1 of Ref. 6) was presented for the disposition function 
ds,l,  and examples were given of various input functions, in,._It is evident 
from these examples that the vector element, u1 = rl(0) + 11, in Eq. 24 
agrees with the input function, in,, in Eq. 25. 

However, although d , , ~  as defined by Benet (Eq. 1 of Ref. 6) and the 
disposition element, dl l  = IS( ll/(S( (Eq. 24, i = I), may seem identical 
from comparison of Eqs. 24 and 25, they are in general not the same. For 
example, the expression presented (6) for d , , ~  is not directly applicable 
to a system if it contains compartments connected in ring arrangement 

Scheme IV-Arbitrary linear pharmacokinetic model used to demon- 
strate the application of Eq. 12. 

(e.g., Scheme IV of Ref. 6). Although such systems can sometimes be 
"broken down" into separate mammillary systems and analyzed in terms 
of these systems (6), this is not always the case. 

Vaughan and coworkers (7,8) extended Benet's approach to account 
for cases with input into peripheral compartments. However, their 
equations (Eqs. 20 and 22 in Ref. 7) are limited to mammillary systems 
only. In contrast, Eq. 12 describes any linear pharmacokinetic system. 
Furthermore, this equation is a simpler representation than those pre- 
sented previously (W) and has the additional advantage that the solution 
for a peripheral compartment can be found as readily as for the central 
compartment. 

Simultaneous Noncentral  Input-The applicability of Eq. 12 can 
be demonstrated using the system in Scheme IV. The S matrix (Eq. 6) 
may be readily assembled so that: 

0 

= (S + E ~ ) [ ( s  + E l ) ( s  + E2) - kizk21) (Eq. 26) 

where El-4 = k1z + k14, kz1+ k20, kS1+ k34, and k40 (Eq. 3). If thesolu- 
tion for Compartment 1 is sought, Eq. 1 2  gives: 

where: 

and: 

= ( S  + Ed)k:ai(S + E z )  (Eq. 29) 

It is convenient to write the determinant in "factor form" as IS1 = ( s  + 
X ~ ) ( S  + Xz)(s + X ~ ) ( S  + X 4 )  where XI-4, the eigenvalues of the matrix K 
- 2, are obtained from Eq. 26. Equation 27 thus becomes: 

The inverse transform can then he obtained as demonstrated previously 
when f l  and f 3  are given (6-8,lO-12). 

The input functions f l  and f 3  may be any continuous or discontinuous 
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t The solution for Compartment 4 corresponds to element 3 of the XI?] 
vector in the latter case. Thus, according to Eq. 12: 

X(O)= 0 
Scheme V-Arbitrary linear pharmacokinetic model used to denon- 
strate the subsystem approach. A is a donor system and B is an acceptor 

system. 

functions. For example, the input function describing an instantaneous 
input in Compartment 1 of the amounts ml,  mz, and m3 a t  times t l ,  t z ,  
and t : i ,  respectively, is: 

f l  = ml6(t - t ~ )  + m26(t - t 2 )  + m36(t - t 3 )  (Eq. 31) 

where 6 is the unit impulse function (12). The Laplace transform of Eq. 
31 is then: 

f l  = mle-lls  + mze- l~s  + m3e-lss (Eq. 32) 

Specifically, when t 1 = 0, this equation becomes: 

f l  = x 1 ( 0 )  + mze-t*s + mae-lgs (Eq. 33) 

Equation 9 shows that the input vector v is the sum of the initial con- 
dition and the transform of the input. However, the last example dem- 
onstrates that  the initial conditions can also be considered as the trans- 
forms of certain input functions. Therefore, when a full transformation 
approach is applied, the initial conditions can be included in the input 
functions, fl, to give a simpler representation. Therefore, the x, (0) term 
in Eqs. 12 and 13 can be omitted, and v can be replaced by f in Eqs. 7 and 
10 without loss of generality. 

A Subsystem Approach-solution for Donor System-The system 
in Scheme V can be divided into a donor subsystem (Scheme V, System 
A) and an acceptor subsystem (Scheme V, System B). If the disposition 
of the donor system is of interest, then Eq. 17 can be used: 

where the superscript, [2], of the disposition elements is placed outside 
the matrix frame for simplicity. The d!:l elements are obtained using Eq. 
11 from: 

In applying Eqs. 10-13, it is important to realize that the i and j are 
independent of the numbers assigned to the compartments. It is com- 
pletely arbitrary how such a numbering is made. The order in which the 
elements of the x vector are written is also arbitrary as long as the order 
of the elements of the respective input vector, v, corresponds and the I 
matrix is composed accordingly. For example, the x vector in Eq. 34 could 
have been written as = ( ~ 3 , x g , x 4 ) ~ ,  which corresponds to d21 = 
( o , f ~ . O ) ~  and: 

where lS1[21 is given by Eq. 36. In the other case, one obtains: 

(Eq. 38) 

where 1S1(21 is given by Eq. 35, which yields the same solution as Eq. 
37. 

Solution for Acceptor System-Let the x vectors for systems [l]  and 
[2] (Scheme V, Systems B and A) be written arbitrarily as xi1] = ( ~ 1 ~ x 2 ) ~  
and xi2] = ( x 3 , ~ 4 , x 5 ) ~ ,  respectively; then Eq. 16 can be written as: 

The disposition elements d!jl and d$l are given by Eq. 11, where S is 
composed as discussed; i .e. ,  djllis obtained from: 

(Eq. 40) 

and dl;l is obtained from Eq. 35. The connector constant k 4 2  connects 
the second element of the xlll vector with the second element of the xlzl 
vector; it is thus placed in the 2,2-position of the connector matrix in Eq. 
39. The connector constant k31 is placed in the 1,l-position by the same 
reasoning. The compartments can be num.bered arbitrarily as before, but 
the composition of the S and C matrixes and the input vectors must 
correspond to the arbitrary order of the elements in the x vectors. 

For Compartment 1, Eqs. 39 and 11 give: 

from which x1 can be obtained when f l  and f 3  are given (6-8,10-12). 
There is always an advantage in using a subsystem approach to solve 

for a donor system compartment because of the simplification of the 
system. If the solution for an acceptor system compartment is sought, 
it will also often be convenient to apply such an approach. The number 
of algebraic operations required to evaluate a determinant is of the order 
n3. With large systems, it should he an advantage to work with the smaller 
determinants and cofactors of the subsystems. 

Partial Transform Approach-Equation 23, which defines the 
unique time domain solution of Eq. 1, has an advantage over Eq. 12 in 
that it does not require transformation of the input functions. The ele- 
ments of the fundamental matrix are always readily found according to 
Eq. 21 by the method of partial fractions using Heaviside's expansion 
formula in its extended form (10,12) because the ratio ISll,/lSI is always 
of the form P(s)lQ(s), where P and Q are polynomials in s with Q of a 
higher degree ( n )  than P. Equation 23, however, has the disadvantage 
that the input functions, fi, must be continuous in the time interval of 
interest. If this is not the case, the approach is still applicable, but the 
system must be analyzed in sections of time where the input is continu- 

However, in the special case with multiple instantaneous (bolus) inputs 
into the central compartment, the solution may readily be obtained 
as: 

ous. 

(Eq. 42) 

where t ,  and m, are as defined previously (Eq. 31) and the summation 
is to be taken to the highest integer value of i for which ti < t is satis- 
fied. 

For simplicity, consider the two-compartment system in Scheme VI 
where the continuous input functions,fl, is of a form that does not have 
a simple Laplace transform. For Compartment 1 of this system, Eq. 23 
yields directly: 
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> I < 

where mo is the dose injected and kd is the in oioo dissolution constant. 
Substitution of this equation into Eq. 47 yields, after integration: 

2 

I ” 

Scheme VI-Two-compartmental linear pharmacokinetic model used 
to demonstrate the partial transformation approach that does not re- 

quire Laplace transformation of the input function fi. 

where, according to Eq. 21: 

(Eq. 44) 

(Eq. 46) 
k - aZ1(t) = k ’ 2 e - a t + 1 2 e - 8 t  

a - P  a - P  

and NP = E1Ez - k12k21 and a + @ = El  + Ez.  
Equation 43 becomes, after substitution: 

As an example, input f l  may be in the form of a dissolution rate-limited 
release from an injected depot of slightly soluble crystalline drug. If it 
is assumed that in uiuo dissolution follows the Hixson-Crowell rela- 
tionship (13), then the input function may be written: 

Equation 49 could have been obtained using a full transformation ap- 
proach but that  would require a somewhat larger derivation. The ad- 
vantage of using a partial transform approach becomes particularly sig- 
nificant for more complex input functions. 
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Abstract Various cephalosporins with different degrees of protein 
binding were administered to human volunteers. Blood samples were 
collected as a function of time and were assayed for drug content by a 
microbiological assay. A pharmacokinetic analysis of the data was per- 
formed using a two-compartment model with and without protein binding 
in the central compartment and a perfusion model. Both the two-com- 
partmerit model without protein binding and the physiological perfusion 
model adequately described the blood levels of all three cephalospor- 

Compartmental models are a “black box” approach to 
predicting blood levels. The model consists of a central 
compartment, usually considered to be the plasma com- 

ins. 

Keyphrases 0 Cephalosporins, various-pharmacokinetic analysis using 
two-compartment and perfusion models Antibiotics, various 
cephalosporin-pharmacokinetic analysis using two-compartment and 
perfusion models Models, pharmacokinetic-two-compartment, and 
perfusion, for various cephalosporins 

partment, and possibly one or more tissue compartments. 
The compartments and the associated volumes and rate 
constants have no physiological meaning; i .e. ,  the plasma 
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